Data-sparse approximation to the operator-valued functions of elliptic operator
نویسندگان
چکیده
منابع مشابه
Data-Sparse Approximation to Operator-Valued Functions of Elliptic Operator
In previous papers the arithmetic of hierarchical matrices has been described, which allows to compute the inverse, for instance, of finite element stiffness matrices discretising an elliptic operator L. The required computing time is up to logarithmic factors linear in the dimension of the matrix. In particular, this technique can be used for the computation of the discrete analogue of a resol...
متن کاملData-sparse approximation to the operator-valued functions of elliptic operator
In previous papers the arithmetic of hierarchical matrices has been described, which allows us to compute the inverse, for instance, of finite element stiffness matrices discretising an elliptic operator L. The required computing time is up to logarithmic factors linear in the dimension of the matrix. In particular, this technique can be used for the computation of the discrete analogue of a re...
متن کاملData-sparse approximation to a class of operator-valued functions
In earlier papers we developed a method for the data-sparse approximation of the solution operators for elliptic, parabolic, and hyperbolic PDEs based on the Dunford-Cauchy representation to the operator-valued functions of interest combined with the hierarchical matrix approximation of the operator resolvents. In the present paper, we discuss how these techniques can be applied to approximate ...
متن کاملData-Sparse Approximation of a Class of Operator-Valued Functions
In the papers [4]-[7] a method for the data-sparse approximation of the solution operators for elliptic, parabolic and hyperbolic PDEs has been developed based on the Dunford-Cauchy representation to the operator-valued functions of interest combined with the hierarchical matrix approximation of the operator resolvents. In the present paper, we discuss how these techniques can be applied to app...
متن کاملOperator-valued tensors on manifolds
In this paper we try to extend geometric concepts in the context of operator valued tensors. To this end, we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra, and reach an appropriate generalization of geometrical concepts on manifolds. First, we put forward the concept of operator-valued tensors and extend semi-Riemannian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2003
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-03-01590-4